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نهایى خرداد           :  

14٠4
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شبیه ساز           :  
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→
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  <<

+ 

1 10 02
11 00 32

  

         x =0          x =0  
  x =0 .       

        x =0  :  
    

    x x

x x

lim f (x) lim x

lim f (x) lim x

+ +

− −

+→ →

−→ →

− −= = = −∞
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اگر نهایى            :  

سخت شد!
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     n      :  
  

n
x

) a lim (ax ) (a)( )k{IM SLX¶ o¬H:
→+∞
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→−∞

= 1
2    y = 1

2    f  .    f  

( , )+ ∞2  f (x) = 3     
x
lim f (x)
→+∞
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→−∞
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) Šǀƌƣê  ŠŰƠƇ ºêé(  Ʋƿźưţ)ç º  ŠŰƠƇëî(  )ê/å( 
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